Segmentation of Sloped Roofs from Airborne LiDAR Point Clouds Using Ridge-Based Hierarchical Decomposition
نویسندگان
چکیده
This paper presents a new approach for roof facet segmentation based on ridge detection and hierarchical decomposition along ridges. The proposed approach exploits the fact that every roof can be composed of a set of gabled roofs and single facets which are separated by the gabled roofs. In this work, firstly, building footprints stored in OpenStreetMap are used to extract 3D points on roofs. Then, roofs are segmented into roof facets. The algorithm starts with detecting roof ridges using RANSAC since they are parallel to the horizon and situated on the top of the roof. The roof ridges are utilized to indicate the location and direction of the gabled roof. Thus, points on the two roof facets along a roof ridge can be identified based on their connectivity and coplanarity. The results of the segmentation benefit the further process of roof reconstruction because many parameters, including the position, angle and size of the gabled roof can be calculated and used as priori knowledge for the model-driven approach, and topologies among the point segments are made known for the data-driven approach. The algorithm has been validated in the test sites of two towns next to Bavaria Forest national park. The experimental results show that building roofs can be segmented with both high correctness and completeness simultaneously. OPEN ACCESS Remote Sens. 2014, 6 3285
منابع مشابه
A 3D Shape Descriptor Based on Contour Clusters for Damaged Roof Detection Using Airborne LiDAR Point Clouds
The rapid and accurate assessment of building damage states using only post-event remote sensing data is critical when performing loss estimation in earthquake emergency response. Damaged roof detection is one of the most efficient methods of assessing building damage. In particular, airborne LiDAR is often used to detect roofs damaged by earthquakes, especially for certain damage types, due to...
متن کاملAutomatic Generation of Building Models in Dense Urban Areas Using Airborne Lidar and Aerial Photograph
Abstract: In this paper, an algorithm is proposed for automatically generating three-dimensional (3D) building models in dense urban areas. Automatic 3D building modeling in dense urban areas is challenging because, especially in Japan, houses that have slant roofs are located close to each other, and their heights are similar. For this case, difficulty in separating point clouds into individua...
متن کاملExtraction of Building Boundary Lines from Airborne Lidar Point Clouds
Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D) city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line e...
متن کاملSVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas
Object-based point cloud analysis (OBPA) is useful for information extraction from airborne LiDAR point clouds. An object-based classification method is proposed for classifying the airborne LiDAR point clouds in urban areas herein. In the process of classification, the surface growing algorithm is employed to make clustering of the point clouds without outliers, thirteen features of the geomet...
متن کاملBuilding Detection and Structure Line Extraction from Airborne Lidar Data
The development of LIDAR (Light Detection and Ranging) system makes the acquisition of 3D surface information more convenient and immediate than other geomatics technologies. However, the 3D coordinates of the surface features, such as the corners, edges and planes of buildings, cannot be obtained directly from the LIDAR data because of its blind characteristics. How to detect the feature locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014